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OPTICAL COMPUTING BASED ON NEURONAL MODELS

1. INTRODUCTION

The ultimate goal of the research work carried out under this grant is

understanding the computational algorithms used by the nervous system and

development of systems that emulate, match, or surpass in their performance

the computational power of biological brain. Tasks such as seeing, hearing,

touch, walking, and cognition are far too complex for existing sequential

digital computers. Therefore new architectures, hardware, and algorithms

modeled after neural circuits must be considereo in order to deal with real-

world problems.

Neural net models and their analogs represent a new approach to

collective signal processing that is robust, fault tolerant and can be

extremely fast. These properties stem directly from the massive

interconnectivity of neurons (the logic elements) in the brain and their

ability to perform many-to-one mappings with varied degree of nonlinearity

and to store information as weights of the links between them, i.e., their

synaptic interconnections, in a distributed non-localized manner. As a

result signal processing tasks such as nearest neighbor searches in

associative memory can be performed in time durations equal to a few time

constants of the decision making elements, the neurons, of the net. We note

that the switching time-constant of a biological neuron is of the order of a

few milliseconds. Artificial neurons (electronic or opto-electronic

decision making plements) c"n be dc t7 - tt tcou~a' toa nilior ''-

faster. Artificial neural nets can therefore be expected to function for

example as content addressable associative memory or to perform complex

computational tasks such as combinatorial optimization and minimization
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which are encountered in self-organization and learning (self programming),

computational vision, imaging, inverse scattering, super-resolution and

automated recognition from partial, (sketchy) information, extremely fast in

a time scale Lhat exceeds by far the capability of even the most powerful

present day serial computer. For Lhese reasons electronic and opto-

electronic analogs and implementations of neural nets are attracting today

considerable attention. The optics in the opto-electronic implementations

provide the needed parallelism and massive interconnectivity while the

decision making elements are realized electronically heralding an ultimate

marriage of VLSI and optics. It should be kept in mind however that

research and advances in optical bistability devices (OBDs) and nonlinear

optics and optical materials, promise to furnish also all-optical decision

making elements and eventually neural nets in which both the

interconnections and decision making are performed optically with the

electronics being used only for control and assessment of the state of the

net. The combination of optics and electronics and the potential for

exploiting advances in opto-electronic components ana materials (for

example; nonvolatile spatial light modulators for realizing programmable

synaptic or interconnectivity masks (plasticity) and OBDs for decision

making) promise also that embodiments of neural nets can be compact and have

low power consumption. Such embodiments, being primarily.analog, are

leading to rekindling of interest in analog computation whose development

has been curtailed by the explosive progress in digital computing.

In associative memory applications, the strength of interconnection

between the "neurons" of the net is determined by the entities one wishes to

store in the net. Usually these entities need to be in the form of

uncorrelated binary representations of the original data. Specific storage
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"recipes" based on a Hebbian model of learning (outer-product storage

algorithm), or variations thereof, are employed then to first calculate the

connectivity matrix then set the weights of links between neurons

accordingly. In this sense the memory is explicitly programmed i.e. taught

what it should know and should be cognizant of. This mode of programming a

net is sometimes called hard learning. What is most intriguing however, is

that neural nets can also be made to be self-organizing and learning i.e.,

to become self-programming (soft learning) through a process of automated

connectivity weight modification driven by the entities presented to them

for learning. This alleviates one of the major constraints of neural nets:

programming complexity, and makes them a much more attractive and powerful

tool for neuromorphic signal and knowledge processing. The combination of

neural nets, Boltzmann machines, and simulated annealing concepts with high

speed opto-electronic implementations promise, as demonstrated by research

carried out under this grant (L1]-[2] and this report), to produce high-

speed artificial neural net processors with stochastic rules for decision

making and state update that can form their own internal representations

(connectivity weights) of outside world data they are presented with,

regardless whether the data is correlated or not, in a manner very analogous

to the way the brain is believed to form its own symbolic representation of

reality. This is an exciting prospect and has far reaching implications for

smart sensing and recognition, and artificial intelligence as a whole. The

use of noise in stochastic learning can shed light on the way nature has

managed to turn noise present in biological neural nets to work to its

advantage and makes stochastic learning, as opposed to deterministic

learning schemes more biologically plausible. Such learning is

probabilistic in nature aimed at capturing the probability density function

-3-
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of the environmental representation the net is exposed to. Probabilistic

learning is therefore naturally compatible with real environmental

representations that are fuzzy in nature. E.,ploratory work at the

University of Pennsylvania is showing that optics can play an important role

in the implementation and speeding up of adaptive learning algorithm, such

as the simulated annealing and the error back-propagation algorithms, in

such self-organizing nets and can lead to their use in automated robust

recognition of entities the nets have had a chance to learn earlier either

with or without the aid of a teacher (supervised or unsupervised learning)

by repeated exposure to them when the net is in its learning mode. One can

envision modules of such self-teaching neural nets trained to recognize and

create symbols of certain features found in natural scenes, patterns or

other input signals. Such modules could be used collectively for higher

level processing where their output symbols are fused to form better or more

reliable interpretation or assessment of the environmental input. The

implication of this for autonomous systems are obvious but the achievement

of such scenarios requires further concerted research.

Learning in neural nets is not rote but involves generalization, i.e.

the net can recognize an input as a member of a class of entities it became

familiar with earlier even though that specific input was not specifically

among those shown to it earlier. This property can be extremely useful for

accelerating teaching sessions in that one need not think of and present to

the learning net all possible associations it is supposed to recognize in

order to make it useful. This property relegates however a degree of

decision making to the net perhaps beyond what we are ordinarily accustomed

to in signal processing systems. Thorough understanding of learning

processes and how a network generalizes is therefore desired to alleviate
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apprehensions and uncertainties stemming from the inclusion of "tninkin

networks" in man made systems that share with him the decision making

process. Such understanding can be realized only through iusights gained

normally by theoretical analysis and with software and hardware simulation

tools. Being highly nonlinear, neural nets (as for example in higher

cortical areas), and their models are often difficult to analyze. Numerical

simulation of neural nets, even relatively small multilayered self-

organizing nets, are proving to be computationally too intensive and

therefore unacceptably time consuming which is hindering progress in the

field. It is for this reason that analog systems in which neural net

behavior can be modeled and studied dynamically at speeds that can be

several orders of magnitude faster than in numerical simulation are an

important component of our ongoing studies and the future research

directions stemming from it. This work is pointing towards neural nets as

nonlinear dynamical systems that are characterized by their phase space

behavior and concepts of attractors, chaos and fractal dimensions. This

will in our opinion provide an infusion of powerful concepts of

nonlinearity, collective behavior, and iterative processing into optical

processing and artificial neurodynamical systems.

Another intriguing promise of neural nets is their ability to store and

retrieve information in a sequential or cyclic manner where a chain of

entities can be stored and recalled in a hetero-associative sequential or

cyclic fashion. This can provide a crude but simple way for forming,

shaping, and controlling the limit cycle (trajectory) of a neural net in its

phase-space. This property together with that of generalization, mentioned

earlier, are important for work in pattern recognition in general and are

being intensively studied at our Electro-Optics and Microwave Optics
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Laboratory in the context of distortionless radar target recogniticn as

described in earlier work (see references listed in this report and in L]
and r2]. The results of this work are expected to be general and would be

beneficial to active and passive machine vision

Being highly nonlinear neural nets possess complex, rich phase-spac e

behavior that exhibits or is in principle capable of exhibiting the

following general featuLes of nonlinear systems:

o Fixed points or limit points in phase-space that act as attractors

with prescribed basins of attraction that are formed explicitly

(hard learning) or implicitly (soft learning) by Hebbian based

rules.

o Fixed limit cycles or closed trajectories in phase-space that act

also as attractors.

o Fixed open trajectories that act as attractors.

o Modification and control of fixed limit points, limit cycles and

open trajectories by external and/or contextual input or by

adaptive thresholding.

Bifurcation and chaotic behavior.

Neuromorphic signal and knowledge processing systems (whether optical,

electronic, or opto-electronic) must be able to draw upon and make use of

these features to achieve powerful signal processing functions. Such

functions include:

Machines that utilize active illumination to discern and perceive the
environment or utilize natural scene illumination or emission for the same
purpose.
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o Nearest neighbor searches

o Combinatorial optimization by minimization of cost-functions

o Solution of ill-posed problems of the kind encountered in

vision, remote sensing, and inverse scattering

" Feature extraction: self-organization, learning and self-

programing

o Generalization

o Sequential and cyclic retention and recall

o Higher order or more complex computations in phase-space. (e.g.

spoken language processing)

All the above are issues that provide motivation to our neural net and

opto-electronic implementation research, both current and future.

The ultimate realization of neuromorphic systems for wide use in signal

processing applicaticns is not a trivial task. It requires vigorous

research and development in three primary areas: neuroscience - to increase

cur understanding of the anatomical, physiological, and biochemical

properties, and function of neural tissue (neural net:) in order to identify

those attributes that might help in their modeling and that can be usefully

applied in artificial systems; the study of opto-electronic architectures

and implementations, and vigorous device development based on advances in

linear and nonlinear optical materials for efficient implementation of

programmable synaptic weights (artificial plasticity) and sensitive optical

decision making elements capable of performing at lower threshold then

present day devices. Thus synergisim between a triad of research

activities: neuroscience; mathematical modeling and analysis coupled with

architectures, implementations, and programming; and material research s
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called for. Our future research in neurodynamics will continue to te

influenced by developments in these fields.

2. RESEARCH ACCOMPLISHMENTS

The first parts of our research program under this grant were concerned

with the modeling, simulation, and implementation of fully interconnected

neural networks and were reported upon in detail in two previous annual

reports F1],[2]. Work with fully interconnected nets and spcifioally a

comparison of inner product versus outer product schemes for associative

storage and recall (see Appendix III) revealed to us that one of the most

distinctive property of neural nets that is worth considering in our

research efforts is self-organization and learning. Sel-organization

(adaptivity) and learning seems to be what sets neural net processing apart

from other approaches to signal processing. Hence our efforts have since

been more concerned with learning ana self-programmability in neural nets.

!earning rerLuires layered nets in which one can clearly distinguish input,

output, and hidden (buffer) groups of neurons with proscribed communication

patterns among them. Such nets are hence non-fully interconnected. To this

end we have devised a scheme for partitioning existing opto-electroni,

vector-matrix multiplier architectures into any number of desired layers

(see Appendices !I and III). Learning requires plasticity, i.e. modifiable

weights of connections between neurons. In our work such plasticity is

achieved primarily through the use of programmable nonvolatile spatial light

modulators (SLMs) such as the magneto-optic SLM (MOSLM). We have devised a

Nonvolatile ferroelectric liquid crystal SLM can also be used. These
however are not available commercially yet.

AM-_-
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new scheme for driving a commercially available 48x43 element '.SLY ,t a

frame refresh time of I msec demonstrating thereby that s~naptic

modification in a 24 binary neuron net constructed around this MOSLM can

take place if desired in a time period as short as 1 msec.

From the outset we have concentrated our effort on stochastic rather

than deterministic learning for several reasons. Stochastic or

probabilistic learning is more compatible with the uncertainty of most

environments in which learning neural nets are expected to operate. 7n

addition operation and study of stochastic neural nets could shed some light

on the way nature has harnessed noise present in biological neural nets to

work to its advantage. Learning in stochastic neural nets involves finding

the global minimum of an energy function associated with the network by

introducing uncertainty in the state update rule of neurons in the net.

Conventionally this is done by a simulated annealing algorithm in a context

of a Boltzmann machine that was devised to be carried out on a serial

computer and f- frequently used in the solution of combinatorialI

optimization problems. Software implementation of the process however is

time consuming. For example finding the optimal wiring layout for a typical

IC chip might take 24 hours on mainframe computer. We have ceveloped

therefore a method for accelerating the annealing time in an opto-electronic

stochastic neural net that can be several orders of magnitude faster than

serial digital methods. As a result, stochastic learning in such nets can

be speeded-up by the same factor. The method involves the use of noisy

thresholding of the neurons iu the net which introduces controlled shaking

of the energy landscape of the net and prevents the net from getting trapped

in a state of local energy minimum improving thereby its chances of finding

the ground statc (global minimum) or one close to it. By introducing the

-9-



noise in the net in bursts of decaying magnitude the chances of converging

onto a low-lying energy state and staying in it are enhanced considerably.

(Such controlled annealing profiles or annealing schedules are also useful

in stochastic learning with binary weight to be described later.) The

results of numerical and experimental simulations (see Appendix V) show that

the noisy thresholding scheme is quite effective. We used the noisy

prototype thresholding scheme in a network of 16 neurons with random bipolar

binary weights implemented in opto-electronic hardware. The results show

that the net can find the ground state in 35T where T is the time constant

of the neurons in the net. This means that for a net with neurons of 7 =

1%sec response time the net can be annealed in 35 Psec and this is

independent of the number of neurons in the net as noise in our scheme is

injected optically onto all neurons simultaneously by projecting a portion

of the snow pattern appearing on an open channel T.V. receiver onto the

photodetector array segment of the opto-electronic neural net.

The pixel transmittance of the MOSLM mentioned earlier is binary. Most

known learning algorithms require small incremental changes in the

connection strengths between neurons of the net. This means multivalued

weights are necessary precluding the use of MOSLMs despite their highly

desirable nonvolatile nature (storage capability). Small incremental

changes in the weights is a requisite for convergence of the learning

algorithm. To overcome this limitation we have devised a method for

stochastic learning with binary weights. The method combines multiple

time-constant annealing bursts and dead-zone limiting as detailed in

Appendix VI.

Fast annealing by noisy thresholding and stochastic learning with

binary weights are significant developments that enabled successful

-10-
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operation recently in our work of the first bimodal stochastic optical

learning machine as detailed (see Appendix VI). The machine consists of 24

unipolar binary neurons, 24x24 bipolar binary connectivity mask implemented in

a 48x48 computer controlled MOSLM, and LED and photodetector arrays with

associated thresholding amplifiers and LED drivers for the neurons themselves.

Preliminary results of the learning capabilities show that the net can learn a

set of 3 associations in a time interval ranging between 10 minutes to 60

minutes with relatively slow (60 msec) neurons. Preliminary results are shown

in Fig. 1. Slow neurons were chosen deliberately to permit visual observation

of the evolving state vector of the net as represented by the LED array of the

net during the various stages of learning.

3. CONCLUSIONS

Research effort under this grant has led to the demonstration of the

first stochastic opto-electronic learning machine employing fast annealing by

noisy thresholding and stochastic learning with binary weights. The prototype

machine of 24 neurons now operational in our laboratory provides a valuable

vehicle for studying the dynamics of stochastic neural nets. As such, the net

can be viewed as an opto-electronic analog computer that can perform iterative

mappings, do stochastic searches of the energy landscape, self-organize and

learn, and act as associative memory after learning is completed. We will

continue our studies of this and larger versions of the machine (a subject for

renewal proposal under preparation) in order to gan better understanding of

the behavior of such machines as artificial neurodynamical systems and explore

a host of intriguing applications involving solution of combinatorial

optimization problems of the kind encountered in vision, remote sensing and

inverse scattering.
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12. N.H. Farhat and Z.Y. Shae, "Bimodal stochastic optical learning
machine," (submitted)(see preprint in Appendix VI).
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1. "Collective nonlinear optical processing based on models of neural
networks," Battelle Memorial Institute, Columbus Division, Nov. 27,
1987,
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of neural networks," IEEE Philadelphia- Section, February 16, 1988.

3. Self-organization and learning in neural net analogs," Philadelphia
IEEE Circuits and Systems Chapter, March 2, 1983.

4. Stochastic neural nets," Long Island IEEE Computer Society, March
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1988.
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N. Farhat participated in the following workshops:

NATO Advanced Study Institute, "Electromagnetic Modeling and Measurements
for Analysis and Synthesis Problems," Ii Ciocco, Tuscany, Italy, Aug. 10-
21, 1987.

JPL Workshop on Neural Network Devices and Applications, Jet Propulsion
Laboratory, Pasadena, Feb. 18-19, 1987.

DARPA/Lincoln Lab Review Panels.
Optical Neural Nets, Caltech, Pasadena, Dec. 14, 1987
Applications, Bedford, MA., Jan. 22, 1988

NSF/ONR "Workshop on Hardware Implementation of Neuron Nets and
Synapses," San Diego, CA., Jan. 13-15, 1988.

"ARO Workshop on Submillimeter Wave Imaging," Breckenridge, Colo.,
February 2-4, 1988.

"Neural Networks for Computing Conference," Snowbird, Utah, April 1988.
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Architectures for optoelectronic analogs of self-organizing
neural networks

Nabil H. Farhat
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Architectures for partitioning optoelectronic analogs of neural nets into input-output and internal groups to form a
multilayered net capable of self-organization, self-programming, and learning are described. The architectures and
implementation ideas given describe a class of optoelectronic neural net modules that, when interfaced to a

conventional computer controller, can impart to it artificial intelligence attributes.

In earlier work on optical analogs of neural nets,1-6 the Here we describe a method for partitioning an opto-
nets described were programmed to do a specific corn- ele :tronic analog of a neural net to implement a multi-
putational task, namely, a nearest-neighbor search layered net analog that can learn stochastically by
consisting of finding the stored entity that is closest to means of a simulated annealing learning algorithm in
the address in the Hamming sense. The net acted as a the context of a Boltzmann machine formalism [see
content-addressable associative memory. The pro- Fig. 1(a)]. The arrangement shown in Fig. 1(a) de-
gramming was done by first computing the intercon- rives from the neural network analogs that we de-
nectivity matrix using an outer-product recipe given scribed earlier. 2 The network, consisting of, say, N
the entities that one wished the net to store and then neurons, is partitioned into three groups. Two
setting the weights of synaptic interconnections be- groups, V, and V2 , represent input and output units,
tween neurons accordingly. respectively. The third group, H, comprises hidden

In this Letter we are concerned with architectures or internal units. The partition is such that N, + N, +
for optoelectronic implementation of neural nets that N 3 = N, where N1 , N9 , ard N 3 refer to the number of
are able to program or organize themselves under su- neurons in the V1, V2 , and H groups, respectively.
pervised conditions, i.e., of nets that are capable of (1) The interconnectivity matrix, designated here W,, is
computing the interconnectivity matrix for the associ- partitioned into nine submatrices, A-F, and three zero
ations that they are to learn and (2) changing the submatrices, shown as blackened or opaque regions of
weights of the links between their neurons according- the Wj mask. The LED array represents the state of
ly. Such self-organizing networks therefore have the the neurons, assumed to be unipolar binary (LED on,
ability to form and store their own internal represen- neuron firing; LED off, neuron not firing). The W,
tations of the associations that they are presented mask represents the strengths of interconnection
with. among neurons in a manner similar to earlier arrange-

Multilayered self-programming nets were ,'escribed ments.- Light from each LED is smeared vertically
as early as 1969,7 and in more recent descriptions' - 10  over the corresponding column of the W, mask with
the net is partitioned into three groups. Two are the aid of an anamorphic lens system [not shown in
input and output groups of neurons that interface with Fig. 1(a)], and light emerging from each row of the
the net environment. The third is a group of hidden mask is focused with the aid of another anamorphic
or internal units that separates the input and output lens system (also not shown) onto the corresponding
units and participates in the process of forming inter- elements of the photodetector (PD) array. The
nal representations of the associations that the net is scheme utilized in Ref. 2 for realizing bipolar values of
presented with. W,, in incoherent light is adopted here; it consists of

Two supervised learning procedures in such parti- separating each row of the Wi, mask into two subrows,
tioned nets have recently attracted attention. One is assigning positive-valued Wij to one subrow and nega-
stochastic, involving a simulated annealing pro- tive-valued Wij to the other, and focusing light emerg-
cess,' t1.2 and the other is deterministic, involving an ing from the two subrows separately onto two adjacent
error backpropagation process. 9  There is general photosites connected in opposition in the photodetec-
agreement, however, that because of their iterative tor array. Submatrix A, with N, x Nt elements, pro-
nature, sequential computation of the links using vides the interconnection weights between units or
these algorithms is time consuming. A faster means neurons within group Vi. Submatrix B, with N2 X N
for carrying out the required computations is needed. elements, provides the interconnection weights be-

Optics and optoelectronic architectures and tech- tween units within V2 . Submatrices C (with N, X N.1
niques can play an important role in the study and elements) and D (with N 3 X N , elements) provide the
implementation of self-programming networks and in interconnection weights between units of V, and H,
speeding up the execution of learning algorithms, and submatrices E (with N. X N., elements) and F

01 46-9592/87,'060448-0:1$2.i8 /0 c 1987. Optical Society of Ameri-a
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V repeated application of the simulated annealing pro-
cedure with the Boltzmann or another stochastic

D H state-update rule and collecting statistics on the states
E 2of the neurons at the end of each run when the net

PO reaches thermodynamic equilibrium.
FRRAYS Starting from an arbitrary W, and for each clamp-

"'J ing of the V, and V, units to one of the associations,
i LD I C the states of units in H are switched and annealing isTHRESOLD INTERCON NEC-

LED Tv 141 Kapplied, until thermodynamic equilibrium is reached.
The state vector of the entire net, which represents a
state of the global energy minimum, is then stored by

COMPUTER the computer. This procedure is repeated for each
CONTROLLfR association several times and the final state vectors

(0 ) recorded every time. Note that, because of the proba-
bilistic nature of the state-update rule discussed later

- .- and in Eqs. (1) and (2) below, the states of global
85 energy minimum in the runs for each association may

- MOSnot necessarily be exactly the same. Therefore the
"OSILM need to collect statistics from which the probabilities

~MASK p, of finding the ith and jth neurons in the same state
Ik ' ,can then be obtained. Next, with the output units V,

unclamped to let them run free, the above procedure is
PO- repeated for the same number of annealings as before

F ED1 and the probabilities p,j' are obtained. The weights

/ r W, ae then incremented by A W, = 70(P - P1 '), where
INTERCONNEC- 17 is a constant that controls the speed and efficacy of
rIvIrY MASK learning. Starting from the new W,,, the above proce-

Fig. 1. Architecture for optoelectronic analog of layered dure is repeated until a steady state W, is reached, at
self-programming net. (a) Partitioning concept showing which stage the learning procedure is complete.
adjustable global threshold scheme. ib) Arrangement for Learning by simulated annealing requires calculat-
rapid determination of the net's global energy E for use in ing the energy, E, of the net8 .10:
learning by simulated annealing.

E= - ±'us, 1)

(with N: x N., elements) provide the interconnection where s, is the state of the ith neuron and

weights of units of V., and H. Units in V, and V., U Ws S , + .2)

cannot communicate with one another directly be-
cause the locations of their interconnectivity weights
in the W,. matrix or mask are blocked out (blackened respectively. A simplified version of a rapid scheme
lower-left and top-right portions of W.). Similarly, for obtaining E optoelectronically is shown in Fig.
units within H do not communicate with one another l(b). The scheme requires the use of an electronically
because locations of their interconnectivity weights in addressed nonvolatile binary (on-off) spatial light
the W, mask are also blocked out (center blackened modulator (SLM) consisting of a single column of N
square of W). The LED element 0 is of graded re- pixels. A suitable candidate is a parallel-addressed
sponse. Its output represents the state of an auxiliary magneto-optic SLM (MOSLM) consisting of a single
neuron in the net that is always on to provide a global column of N pixels that are driven electronically by
threshold level to all units by contributing only to the the same signal driving the LED array in order to
light focused onto negative photosites of the PD ar- represent the state vector s of the net. A fraction of
rays from pixels in the G column of the interconnectiv- the focused light emerging from each row of the W,
ity mask. This is achieved by suitable modulation of mask is deflected by the beam splitter BS onto the
pixels in the G column. This method for introducing individual pi-:els of the column MOSLM such that
the threshold level is attractive, as it allows for provid- light from adjacent pairs of subrows falls upon one
ing to all neurons in the net a fixed global threshold, an pixel of the MOSLM. The MOSLM pixels are over-
adaptive global threshold, or even a noisy global laid by a checkered binary mask as shown. The
threshold. opaque and transparent pixels in the checkered mask

By using a computer-controlled nonvolatile spatial are staggered in such a fashion that light emerging
light modulator to implement the W, mask in Fig. 1(a) from the left subcolumn will be derived from the posi-
and including a computer-controller as shown, the tive subrows W, + of W, and light emerging from the
scheme can be made self-programming with the ability right subcolumn will be derived from the negative
to modify the weights of synaptic links between its subrows W,- of W,,. By separately focusing the light
neurons. This is done by fixing or clamping the states from the left and right subcolumns as shown onto two
of the V, (input) and V, (output) groups to each of the photodetectors and subtracting and halving their out-
associations that we want the net to learn and by puts, one obtains
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F! that the role of optics in the architecture described not
E -, W,:+ - I! s s: only facilitates partitioning the net into groups or lay-
2 -ers but elso provides the massive interconnectivitv

mentioned earlier. For example, for a neural net with

a total of N = 512 neurons, the optics permit making
1 I ' Wis Js, (3) 2N = 2.62 X 105 programmable weighted intercon-

2 - \ r nections among the neurons in addition to the 4N =
2 , 2048 interconnections that would be needed in the

arrangement shown Fig. I(b) to compute the energy E.
which is the required energy. In Eq. (3) the contribu- Assuming that material and device requirements of
tions of Oi and Ii in Eq. (2) are absorbed in Wi,. The the architectures described can be met and parti-
simulated annealing algorithm involves determining tioned, self-organizing neural net modules will be rou-
the change AEk in E that is due to switching the state tinely constructed; then the addition of such a module
of the kth neuron in H selected at random, computing to a computer-controller through a high-speed inter-
the probability p(AEk) = 1/[I + exp(-AEk/T)], and face can be viewed as providing the computer-control-
comparing the result with a random number nf(0, 1) ler with artificial intelligence capabilities by imparting
produced by a fast random-number generator. If to it neural net attributes. These capabilities include
p(AE) > n.. the change in the state of the kth neuron self-organization, self-programmability and learning,
is retained. Otherwise it is discarded and the neuron and associative memory capability for conducting
is returned to its original state before a new neuron in nearest-neighbor searches. Such attributes would en-
H is randomly selected and switched and the anneal- able a small computer to perform powerful computa-
ing procedure repeated. This algorithm ensures that tional tasks of the kind needed in pattern recognition
in thermal equilibrium the relative probability of two and in the solution of combinatorial optimization
global states follows a Boltzmann distribution8; hence problems and ill-posed problems encountered, for ex-
it is sometimes referred to as the Boltzmann machine, ample, in inverse scattering and vision, which are con-
In this fashion the search for a state of global energy fined at present to the domain of supercomputers.
minimum is done by employing a gradient-descent The research reported was supported by grants
algorithm that allows for probabilistic hill climbing, from the Defense Advanced Research Projects Agen-
The annealing process usually also includes a cooling cy-Naval Research Laboratory, the U.S. Army Re-
schedule in which the temperature T is allowed to search Laoroy the U .S. Ary Re-
decrease between iterations to increase gradually the search Office, and The University of Pennsylvania's
fineness of search for the global energy minimum. Laboratory for Research on the Structure of Matter.
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Optoelectronic analogs of self-programming neural nets:
architecture and methodologies for implementing fast
stochastic learning by simulated annealing

Nabil H. Farhat

Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from
conventional approaches to signal processing. It leads to self-programmability which alleviates the problem
of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelec-
tronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic
learning by simulated annealing in the context of a Boltznsn machine are presented. Stochastic learning is
of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and
methodologies for appreciably accelerating stochastic learning in such a multilayered net are described.
These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile
programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays.
and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible.
The findings reported predict optoelectronic chips that can be used in the realization of optical learning
machines.

I. kdroductim decision-making elements, the neurons, of the net.
Interest in neural net models (see, for example, Refs. The switching time constant of a biological neuron is of

1-9) and their optical analogs (see, for example, Refs. the order of a few milliseconds. Artificial neurons
10-25) stems from well-recognized information pro- (electronics or optoelectronic decision-making ele-
cessing capabilities of the brain and the fit between ments) can be made to be a thousand to a million times
what optics can do and what even simpified models of faster. Artificial neural nets can therefore be expect-
neural nets can offer toward the development of new ed to function, for example, as content-addressable
approaches to collective signal processing. associative memory or to perform complex computa-

Neural net models and their analogs present a new tional tasks such as combinatorial optimization which
approach to collective signal processing that is robust, are encountered in computational vision, imaging, in-
fault tolerant, and can be extremely fast. Collective or verse scattering, superresolution. and automated rec-
distributed processing describes the transfer among ognition from partial, (sketchy) information, extreme-
groups of simple processing units (e.g., neurons), that ly fast in a time scale that is way out of reach for even
communicate among each other, of information that the most powerful serial computer. In fact once a
one unit alone cannot pass to another. These proper- neural net is programmed to do a given task it will do it
ties stem directly from the massive interconnectivity almost instantaneously. More about this point later.
of neurons (the decision-making elements) in the brain As a result optoelectronic analogs and implementa-
and their ability to store information as weights of tions of neural nets are attracting considerable atten-
links between them, i.e., their synaptic interconnec- tion. Because of the noninteracting nature of pho-
tions, in a distributed nonlocalized manner. As a re- tons, the optics in these implementations provide the
suit, signal processing tasks such as nearest-neighbor needed parallelism and massive interconnectivity and
searches in associative memory can be performed in therefore a potential for realizing relatively large neu-
time durations equal to a few time constants of the ral nets while the decision-making elements are real-

ized electronically heralding a possible ultimate mar-
riage between VLSI and optics.

The author is with University of Pennsylvania, Electrical Engi- Architectures suitable for use in the implementation
nearing Department, Philadelphia, Pennsylvania 19104-6390. of optoelectronic neural nets of -D and 2-D arrange-

Received 15 May 1987. ments of neurons were studied and described earli-
00O3-6l91.5/87/215$9.1. 1102.00/0. er.1° - ' 5 Two-dimensional architectures for optoelec-
C 1987 Optical Society of America. tronic analogs have been successfully utilized in the
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recognition of objects from partial information by ei- In this paper we are therefore concerned with archi-
ther complementing the missing informatiu- or by tactures fo. optoelectionic implementation of neural
automatically generating correct labels of the data (ob- nets that are able to program or organize themselves
ject feature spaces) the memory is presented with.2 under supervised conditions, i.e., of nets that are capa-
These architectures are based primarily on the use of ble of (a) computing the interconnectivity matrix for
incoherent light to help maintain robustness, by avoid- the associations they are to learn, and (b) changing the
ing speckle noise and the strict positioning require- weights of the links between their neurons accordingly.
ments encountered when use of coherent light is con- Such self-organizing networks have therefore the abili-
templated. ty to form and store their own internal representations

In associative memory applications, the strengths of of the entities or associations they are presented with.
interconnections between the neurons of the net are In Sec. II we attempt to elucidate those features that
determined by the entities one wishes to store. Ideal set neural processing apart from conventional ap-
storage and recall occurs when the stored vectors are proaches to signal processing. The ideas expressed
randomly chosen, Le., uncorrelated. Specific storage have been arrived at as a result of maintaining a critical
recipes based on a Hebbian model of learning (outer- attitude and constantly keeping in mind, when en-
product storage algorithm), or variations thereof, are gaged in the study of neural net models and their
usually used to explicitly calculate the weights of inter- applications, the question of what is unique about the
connections which are set accordingly. This repre- way they perform signal processing tasks. If they
sents explicit programming of the net, i.e., the net is seem to perform a signal processing function well, could
explicitly taught what it should know. What is most the same function be carried out equally well with a
intriguing, however, is that neural net analogs can also conventional processing scheme? To gain insight into
be made to be self-orglnizing and learning, i.e., become this question we were led to a comparison between
self-programming. The combination of neural net outer-product and inner-product schemes for imple-
modeling, Boltzmann machines, and simulated an- menting associative memory. The insight gained
nealing concepts with high-speed optoelectronic im- from this exercise points clearly to certain distinction
plementations promises to produce high-speed artifi- between neural and conventional approaches to signal
cial neural net processors with stochastic rather than processing which will lead us to considerations of self-
deterministic rules for decision making and state up- programmability and learning. These are presented
date. Such nets can form their own internal represen- in Sec. 11 together with a description of architectures
tations (connectivity weights) of their environment for optoelectronic analogs of such self-organizing
(the outside world data they are presented with) in a nets. The emphasis is on stochastic supervised learn-
manner analogous to the way the brain forms its own ing, rather than deterministic learning, and on the use
representations of reality. This is quite intriguing and of noise to ensure that the combinatorial search proce-
has far-reaching implications for smart sensing and dure for a global energy or cost function during the
recognition, thinking machines, and artificial intelli- learning phase does not get trapped in a local mini-
gence as a whole. Our exploratory work is showing mum of the cost function. In Sec. III a discussion of
that optics can also play a role in the implementation practical considerations related to the implementation
and speeding up of learning procedures such as simu- of the architectures described and for accelerating the
lated annealing in the context of Boltzmann machine learning process is presented. An estimate of the
formalism 2 - 9 .4

9 and error backpropagation- ° in such speedup factor compared to serial implementation is
self-teaching nets and for their subsequent use in auto- included. Conclusions and implications of the work
mated robust recognition of entities the nets have had are then given. These attest to a continuing role for
a chance to learn earlier by repeated exposure to them optics in the implementation of artificial neural net
when the net is in a learning mode. Induced self- modules or neural chips with self-programming and
organization and learning seem to be what sets apart learning capabilities, i.e., to optical learning machines.
optical and optoelectronic architectures and process-
ing based on models of neural nets from other conven-
tional approaches to optical processing and have the . i or Neual Procassng
advantage of avoiding explicit programming of the net Right from the outset, when attention was flrst
which can be time-consuming and has come to be drawn to the fit between optics and neural models, 10 11

referred to as the programming complexity of neural our investigations of optoelectronic analogs of neural
nets- 8 The partitioning scheme presented in Sec. III nets and their applications have perpetually kept in
permits defiming input, output, and intermediate lay- view the question of what is it that neural nets can do
era of neurons and any prescribed communication pat- that is not doable by conventional means, i.e., by well.
tern between them. This enables the implementation established approaches to signal processing. Such
of deterministic learning algorithms such as error critical attitude is found useful and almost mandatory
backprojection. However, the discussion in this paper to avoid being swept into ill-conceived research en-
focuses on stochastic learning by simulated annealing deavors. It is not easy of course to see all the ramifica-
since such learning algorithms may prove to be more tions of a problem while one is immersed in its qtudv
biologically plausible since they might account for the and solution, but a critical attitude always helps to
noise present in biological neural nets as will be elabo- isolate real attributes from biased ones.
rated on in Sec. IV. Being collective, adaptive, iterative, and highly non-
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linear, neural net models and their analogs exhibit qlv sgn T 'v,
complex and rich behavior in their phase space or state " =

space that is described in terms of attractors, limit
points, and limit cycles with associated basins of at- where the superscripts (q) and (q+1) designate two
traction, bifurcation, and chaotic behavior. The rich consecutive iterations and sgnfl represents the sign of
behavior offers intellectually attractive and challeng- the bracketed quantity. The iteration triggered by an
ing areas of research. Moreover, many be!-eve that in externally applied initializing or strobing vector q7v, q
studying neural nets and their models we are attempt- 0 0, i.e., (0v, continues until a steady-state vector that
ing to benefit from nature's experience in its having is one of the nominal state vectors or attractors of the
arrived over a prolonged period of time, through a net that is closest to 10v in the Hamming sense is
process of trial and error and retainment of those per- converged upon. At this point the net has completed a
mutations that enhance the survivability of the organ- nearest-neighbor search operation. For simplicity the
ism, at a powerful, robust, and highly fault-tolerant usual terms for the threshold 0, and external input 1, of
processor, the brain, that can serve as the model for a the ith neuron have been omitted from Eq. (1). These
new generation of computing machines. Clues and can, without los of generality of the conclusions ar-
insights gained from its study can be immensely bene- rived at below, be assumed to be zeiu or absorbed in the
ficial for use in artificially intelligent man.made ma- summation in Eq. (1) through the use of two additional
chines that, like the brain, are highly suited for pro- always-on neurons that communicate to every other
ceasing of spatiotemporal multi-sensory data and for neuron in the net its tlh -shold and external input
motor control in a highly adaptive and interactive levels, through appropriate weights added to T,,.
environment. Note in Fig. 1 that the itera ted input vector is always

All the above are general attributes and observations the transpose of the threshclded output vector.
that by themselves are sufficient justification for the By substituting the expression for the storage ma-
interest displayed in neural nets as a new approach to trix
signal processing and computation. To gain, however, M
further specific insight in what sets neural nets apart T,1 - 2)
from other approaches to signal processing, we consid-
er a specific example. This involves comparison be- formed by summing the outer products of the stored
tween two mathematically equivalent representations vectors vI"", i - 1,2. N and m - 1,2 ... M, into Eq.
of a neural net, one involving outer products, and the (1) and interchanging the order of summations, we
other inner products. 31 We begin by considering the obtain
optoelectronic neural net analog described earlier1 2  .
and represented here in Fig. 1. The iterative proce- )= sgn ,v
dure determining the evolution of the state vector v of
the net is illustrated in Fig. 1(a) and the vector-matrix where
multiplication scheme with thresholding and feedback 41c, = 'X" 4

' ,v

used to interconnect all neurons with each other
through weights set by the Tqj mask is shown in Fig. are coefficients determined by the inner product of the
1(b). For a net of size N with interconnectivity matrix input vector 'qlv at any iteration by each of the stored
T,j, where Ti - 0, ii - 1,2 ... N, the iterative equation vectors. Equations (3) and (4) can be implemented
for the state vector is employing the optoelectronic direct storage and inner-

product recall scheme shown in Fig. 2 in which LEA
and PDA represent light emitting array and photode-
tector array, respectively. Noting that the two seg-
ments to the left and to the right of the diffuser in Fig. 2
are identical, one can arrive at the simplified equiva-

----- o-......- lent reflexive inner-product scheme shown in Fig. 3.
Now we have arrived at two equivalent implementa-
tions of the neural model. These are shown together

......------ ., ' 'in Fig. 4. One employs outer-product distributed stor-
,j'L- .. =...~ age and vector-matrix multiplication with threshold-

ed feedback in the recall as shown in Fig. 4(a), and the
second employs direct storage and inner-product re-h -call with thresholded feedback as shown in Fig. 4(b).

,J .The reflexive or inner-product scheme has several ad-i . . vantages over the outer-product scheme. One is stor-

age capacity. While an N X N storage matrix in the
outer-product scheme can store M < N/4 InN vectors
of length N beyond which the probability of correct
recall deteriorates rapidly because of proliferation of

Fig. 1. Outer-product Idistributed) storage and recall scheme, spurious states, 2 the storage mask T,, j 1.2 ... N, m
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"-," = 1,2 ... M, in the inner-product scheme can store

- - directly a stack of up to M - N vectors in the same size
-. .. matrix. It can be argued that the robustness and the

IA 
fault tolerance of the distributed storage scheme have
been sacrificed in the inner-product scheme, but this is

- --- ----.... a mute argument. Robustness can be easily restored
'I ~ by introducing a certain degree of redundancy in the

L,..... inner-product scheme of Fig. 4(b). This can be done,
L. .......- for example, by storing a vector in more than one

Fig. 2. Direct storage and inner-product recall scheme. location in the stack. The internal optical feedback in
the inner-product implementation is certainly another
attractive advantage. In fact the beauty of internal
feedback has inspired the concept of reflexive associa-
tive memory or nonlinear resonator CAM (content
addressable memory) shown in Fig. 5. This scheme,
which becomes possible because the T matrix is sym-

PDA - . metrical, utilizes the same optics for internal feedback

AO og ."Ik - _ and for transposing the reflected state vectors. The
scheme is perfectly suited for use with nonlinear reflec-

.tor arrays or arrays of optically bistable elements.

Z, mA " , The advantages of a similar bidirectional associative

"Am 3TCA OPmemory have also been noted recently elsewhere. 25

L- 0.1 vcTons In view of the obvious advantages of the reflexive
scheme (Fig. 4(b)], one is led to question the reason

Fig. 3. Reflexive inner-product scheme. nature appears to prefer distributed (Hebbian) storage

[as in Fig. 4(a)] over localized storage [as in Fig. 4(b)]
besides fault tolerance and redundancy. As a result of
the preceding exercise the answer now comes readily to
mind: in the inner-product scheme the connectivity
matrix T,, is not present. Self-organization and learn-

-ing in biological systems are associated with modifica-
,' '' tions of the synaptic weights matrix. Hence learning

in the neural sense is not possible in the inner-product

scheme. In this sense the inner-product scheme of
Fig. 4(b) is not neural but involves conventional corre-
lations between the input vectors and the stored vec-
tors. One can argue that the instant the identity of the

"- ........ weights matrix T, was obliterated the inner product
* network stopped being neural as learning through

weights modification is no longer possible. We aretherefore led to conclude that distributed storage and

self-organization and learning are the most distinctive

Fig. 4. Two equivalent neural net analogs: (a) outer-product di3- features of neural signal processing as opposed to con-

tributed storage and recall with external feedback; (b) reflexive ventional approaches to signal processing such as in

inner-product direct storage and recall with internal feedback. the inner-product scheme which involves simple corre-
lations and where it is not clear how seif-organization
and learning can be performed since there is no T,
matrix to be modified.

Neural net processing has additional attractive fea-
NtNNLINEAR tures that are not as distinctive as self-organization
AfV RcoT and learning. These include heteroassociative storage

T T and recall where the same net performs the functions
of storage, processing, and labeling of the output (final
state) simultaneously. While such a task may also be

T' realized with conventional signal processing nets, each
W T of the above three functions must however be realized

NoNuINAR separately in a different subnet. A striking example of
RFLECTOR this feature reported recently2 3 is in the area of radar
ARA target recognition from partial information employing

Fig. 5. Concept of nonlinear resonator content addressable sinogram representation of targets of interest. The
memory. sinogram representations were used in computing and
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setting the synaptic weight matrix in an explicit learn-
ing mode. Recognition in radar from partial informs-
tion is tantamount to solution of the superresolution
problems. The ease and elegance with which the neu- a ,. /
ral net approach solves this classical problem is, to say
the least, impressive. %E Mc..

Other distinctive features of neural nets associated i0 . VW-S

with the rich phase-space behavior are bifurcation and
chaotic behavior. These were mentioned earlier but
are restated here because of their importance in se-
quential processing of data (e.g., cyclic heteroassocia- Fig. 6. Optoelectronic analog of self-organizing neural net parti-

tive memory) and in the modeling and study of mental tioned into three layers capable of stochastic self-programming and
disorder and the effect of drugs on the nervous sys- learning.
tem. 3

M. PawMMng Ard*ctues and Stodst Leanmbg
by SMimuatd Amwal@ig nicate among each other. They can only communicate

In preceding work on optical analogs of neural with neurons in the input and output groups as stated

nets,1° - 2 the nets described were programmed to do a earlier.
specific computational task, namely, a nearest-neigh- Two supervised learning procedures in multilayered
bor search that consisted of finding the stored entity nets have recently attracted attention. One is sto-
that is closest to the address in the Hamming sense. chastic, involving a simulated annealing process,26.2 7

As such the net acted as a content addressable associa- and the other is deterministic, involving an error back-
tive memory. The programming was done by first propagation process.30 There is general agreement,
computing the interconnectivity matrix using a Heb- however, that because of their iterative nature, se-
bian (outer-product) recipe given the entities one quential computation of the weights using these algo-
wished the net to store, followed by setting the weights rithms is very time-consuming. A faster means for
of synaptic interconnections between neurons accord- carrying out the cequired computations is needed.
ingly. Nevertheless, the work mentioned represents a mile-

In this section we are concerned with architectures stone in that it opens the way for powerful collective
for optoelectronic implementation of neural nets that computations in multilayered neural nets and the par-
are able to program or organize themselves under su- titioning concept dispels earlier reservations36 about
pervised conditions. Such nets are capable of (a) com- the capabilities of early single layered models of neu-
puting the interconnectivity matrix for the associa- ral nets such as the Perceptron.37  The partitioning
tions they are to learn, and (b) changing the weights of feature and the ability to define input and output
the links between their neurons accordingly. Such neurons may also be the key for realizing meaningful
self-organizing networks therefore have the ability to interconnection between neural modules for the pur-
form and store their own internal representations of pose of performing higher-order hierarchical process-
the associations they are presented with. The discus- ing.
sion in this section is an expansion of one given earli- Optics and optoelectronic architectures and tech-
er.-3  niques can play an important role in the study and

Multilayered self-programming nets have recently implementation of self-programming networks and in
been attracting increasing attention.4.2

8
-3 .0 3  For ex- speeding up the execution of learning algorithms.

ample, in Ref. 28 the net is partitioned into three Here we describe a method for partitioning an opto-
groups, two are input and output groups of neurons electronic analog of a neural net to implement a multi-
that interface with the net environment and the third layered net that can learn stochastically by means of a
is a group of hidden or internal units that acts as a simulated annealing learning algorithm in the context
buffer between the input and output units and partici- of a Boltzmann machine formalism (see Fig. 6). The
pates in the process of forming internal representa- arrangement shown in Fig. 6 derives from the neural
tions of the associations the net is presented with. network analogs we described earlier. 2 The network.
This can be done, for example, by clamping or fixing consisting of, say, N neurons, is partitioned into three
the states of neurons in the input and output groups to groups. Two groups, Vi and V,_, represent visible units
the desired pairs of associations and letting the net run that can be viewed as input and output groups, respec-
through its learning algorithm to arrive ultimately at a tively. The third group H are hidden or internal units.
specific set of synaptic weights or links between the The partition is such that N, + N2 + N3 - N, where N 1,
neurons. No neuron or unit in the input group is N2 , and N 3 refer to the number of neurons in the V1, V,,
linked directly to a neuron in the output group and vice and H groups, respectively. The interconnectivity
versa. Any such communication must be carried out matrix, T, is partitioned into six submatrices. A, B. C.
via the hidden units. Neurons within the input group D, E, F, and three zero-valued submatrices shown as
can communicate among each other and with hidden blackened or opaque regions of the T,, mask. The
units and the same is true for neurons in the output LED array represents the state of the neurons, as-
group. Neurons in the hidden group cannot commu- sumed to be unipolar binary (LED on - neuron firing,
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LED off - neuron not firing). The T,j mask repre- (1) Starting from an arbitrary T, clamp V, and V.
sents the strengths of interconnection between neu- to the desired association keeping H free running.
rons in a manner similar to earlier arrangements. 12  (2) Randomly select a neuron in H, say the kth
Light from each LED is smeared vertically over the neuron, and flip its state [recall we are dealing with
corresponding column of the Tj mask with the aid of binary (0,1) neurons].
an anamorphic lens system (not shown in Fig. 6), and (3) Determine the change AEk in global energy E of
light emerging from each row of the mask is focused the net caused by changing the state of the kth neuron.
with the aid of another anamorphic lens system (also (4) If AEh < 0, adopt the change.
not shown) onto the corresponding elements of the (5) If AEh > 0, do not discard the change outright
photodetector (PD) array. The same scheme utilized but calculate first the Boltzmann probability factor,
in Ref. 12 for realizing bipolar values of Ti in incoher- - AR
ent light is assumed here, namely, separating each row P,= exp -IF. ,5)
of the TqI mask into two subrows and assigning posi-

tive-valued Tij to one subrow and negative-valued Ti/ and compare the outcome to a random number N, e
to the other, and focusing light emerging from the two [0,1]. If Pk > N, adopt the change of states of the kth
subrows separately on two adjacent photosites on the neuron even if it leads to an energy increase (i.e., AEk >
photodetector array connected in opposition. Subma- 0). If Ph < N,, discard change, i.e., return the kth
trix A, with N, x N, elements, provides the intercon- neuron to its original state.
nection weights between units or neurons within group (6) Once more select a neuron in H randomly and
V1. Submatrix B, with N 2 X N2 elements, provides the repeat steps (1)-(5).
interconnection weights between units within V2. (7) Repeat steps (1)-(6) reducing at every round the
Submatrices C (with N, x N3 elements) and D (with N 3 temperature T gradually [e.g., T - To/log(1 + m),
x N1 elements) provide the interconnection weights where m is the round number, cooling schedule is fre-
between units of V1 and H and submatrices E (with N2  quently used to ensure convergence] until a situation is
x N3 elements) and F (with N 3 x N2 elements) provide reached where changing states of neuron in H does not
the interconnection weights of units of V2 and H. alter the energy E, i.e., A6k - 0. This indicates a state
Units in V and V2 cannot communicate among each of thermodynamic equilibrium or a state of global en-
other directly because locations of their interconnecti- ergy minimum has been reached. The temperature T
vity weights in the T,, matrix or mask are blocked out determines the fineness of search for a global mini-
(blackened lower left and top right portions of Ti,). mum. A high T produces coarse search and low T a
Similarly units within H do not communicate among finer grained search.
each other because locations of their interconnectivity (8) Record the state vector at thermodynamic equi-
weights in the Tq mask are also blocked out (blackened librium, i.e., the states of all neurons in the net, i.e.,
center square of Ti,). The LED element 0 is of graded those in H and those in V, and V2 that are clamped.
response. Its output represents the state of an auxilia- (9) Repeat steps (1)-(8) for all other association on
ry neuron in the net that is always on to provide a V, and V2 we want the net to learn and collect statistics
global threshold level to all units by contributing only on the states of all neurons by storing the states at
to the light focused onto negative photosites of the thermodynamic equilibrium in computer memory as
photodetector (PD) arrays from pixels in the G column in step (8). This completes the first phase of exposing
of the interconnectivity mask. This is achieved by the net to its environment.
suitable modulation of the transmittance of pixels in (10) Generate the probabilities P,, of finding the ith
the G column. This method for introducing the neuron and the jth neuron in the same state. This
threshold level is attractive, as it allows for providing completes phase I of the learning cycle.
to all neurons in the net a fixed global threshold, an (11) Unclamp neurons in V, letting them run free as
adaptive global threshold, or even nosiy giobal thresh- with neurons in H.
old if desired. (12) Repeat steps (1)-(10) for all input vectors V,

By using a computer-controlled nonvolatile spatial and collect statistics on the states of all neurons in the
light modulator to implement the T,, mask in Fig. 6 net.
and including a computel controller as shown, the (13) Generate the probabilities A. of finding neuron
scheme can be made self-programming with ability to i and neuron j in the same state.
modify the weights of synaptic links between its neu- (14) Increment the current connectivity matrix T,
rons. This is done by fixing or clamping the states of by ATi - c(P, - P') where c is a constant representing
the V (input) and V2 (output) groups to each of the and controlling the speed of learning. This completes
associations we want the net to learn and by repeated phase II of the learning cycle.
application of the simulated annealing procedure with (15) Repeat steps (1)-(14) again and againuntil the
Boltzmann, or other stochastic state update rule, and increments AT,j tend to zero, i.e., become smaller than
collection of statistics on the states of the neurons at some prescribed small number. At this point the net is
the end of each run when the net reaches thermody- said to have captured the underlying structure or
namic equilibrium. formed its own representations of its environment de-

Stochastic learning by simulated annealing in the fined by the associations presented to it. We are now
partitioned net proceeds as follows: dealing with a learned net.
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One can make the following observations regarding magnitude compared to serial digital implementation.
the above procedure: Learning by simulated annealing requires calculat-

The search for state of global energy minimum is ing the energy E of the net, ".3
basically a gradient descent procedure that allows for
probabilistic hill climbing to avoid entrapment in a E = .-2 uv,. k6)
state of local energy minimum. The relative probabil-
ity of two global states a and 0 is given by the Boltz- where vi is the state of the ith neuron and
mann distribution PIPj - exp 1-(E. - Ea)/1, hence
the name Boltzmann machine.28 Therefore the lowest -n I T,jvj - 8j + I,
energy state is the most probable at any temperature ,.,
and is sought by the procedure. is the activation potential of the ith neuron with 8i and

Unlike explicit programming of a neural net where Ii being the threshold level and external input to the
lack of correlation among the stored vectors is a pre- i-th neuron respectively and the summation term rep-
requisite for ideal storage and recall, self-program- resenting the input to the i-th neuron from all other
ming by simulated annealing has no such requirement. neurons in the net. By absorbing 6i and I, in the
In fact learning by simulated annealing in a Bol-mann summation term as described earlier, Eq. (7) can be
machine looks for underlying similarities or correla- simplified to
tions in the training set to generate weights that can
make the net generalize. Generalization is a property u, =  T,v-,. (8)
where the net recognizes an entity presented to it even
though it was not among those specifically used in the A simple analog circuit for calculating the contribu-
learning session. Learning is thus not rote. tion Ei of the ith neuron to the global energy E of the

The final Ti, reached represents a net that has net is shown in Fig. 7(a). Here the product of the
learned its environment by itself under supervision, activation potential of the ith neuron and the state vi of
i.e., it has formed its own internal representations of its the ith neuron is formed to obtain E, which is then
surroundings. Those environmental states or input/ added to all terms formed similarly in parallel for all
output associations that occur more frequently will other neurons in the net. Although VLSI implemen-
influence the final Tij more than others and hence form tation of such an analog circuit for parallel calculation
more vivid impressions in the synaptic memory matrix of the global energy is feasible, this becomes less at-
Tii. tractive as the number of neurons increases because of

The learning procedure is stochastic but is still basi- the interconnection problem associated with the large
cally Hebbian in nature where the change in the synap- fan-in at the summation element.
tic interconnection between two units (neurons) de- A simplified version of a rapid scheme for obtaining
pends on finding the two units in the same state E optoelectroncally is shown in Fig. 7. The scheme
(sameness reinforcement rule). requires the use of an electronically addressed nonvol-

Evidently, being stochastic in nature (involving atile binary (on-off) spatial light modulator consisting
probabilistic state transition rules and simulated an- of a single column of N pixels. A suitable candidate is
nealing) the learning procedure is lengthy (taking a parallel addressed magnetooptic spatial light modu-
hours in a digital simulation for nets of a few tens to a
few hundred neurons). Hence, speeding up the pro-
cess by using analog optoelectronic implementation is
highly desirable. ,°'yo

Stochastic learning consists of two phases: phase I
involves generating probabilities P,j when the input
and output of the net are specified. Phase II involves G-E__
generating the probabilities Fl, when only the input is. , LO S
specified while the rest of the net is free running fol- " ...
lowed by computing the weight increments and modi- E I E.

fying the T, matrix accordingly.

IV. A=eeated Leambi gs
Stochastic learning by the simulated annealing pro-

cedure we described was originally conceived for serial
computation. When dealing with parallel optical
computing systems it does not make sense to exactly
follow a serial algorithm. Modifications that can take -
advantage of the available parallelism of optics to
speed up stochastic learning are therefore of interest. -, sx
In this section we discuss several such modifications Fig. 7. Two schemes for parallel computing of the ghobal energv in
that offer potential for speeding-up stochastic learning an optoelectronic analog of a multilayered seif-organizing net: ta
in optoelectronic implementations by several orders of electronic scheme: i b) optoelectronic scheme.
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lator (MOSLM) consisting of a single column of N [see Eq. (5)] employing speckle statistics is described
pixels that are driven electronically by the same signal in Ref. 40 and optical generation of random number
driving the LED array to represent the state vector v of arrays by photon counting image acquisition systems
the net. A fraction of the focused light emerging from or clipped laser speckle have also been recently de-
each row of the T,, mask is deflected by the beam scribed." - " These photon counting image acquisi-
splitter (BS) onto the individual pixels of the column tion systems have the advantage of being able to gener -
MOSLM such that light from adjacent pairs of su- ate normalized random numbers with any probability
brows of Tq falls on one pixel of the MOSLM. The density function. A more important advantage of op-
MOSLM pixels are overlaid by a checkered binary tical generation of random number arrays however is
mask as shown. The opaque and transparent pixels in the ability to exploit the parallelism of optics to modify
the checkered mask are staggered in such a fashion the simulated annealing and the Boltzmann machine
that light emerging from the left subcoluman will origi- formalism detailed above to achieve significant im-
nate from the positive subrows T + of Ti only and light provement in speed. As stated earlier, with parallel
emerging from the right subcolumn will originate from optical random number generation, a spatially and
the negative subrows T7 or Tij. By separately focusing temporally uncorrelated linear array of perculating
the light from the left and right subcohumns as shown light spots of suitable size can be generated and imaged
onto two photodetectors and subtracting and halving on the photodetector array (PDA) of Fig. 6 such that
their outputs, one obtains both the positive and negative photosites of the PDA

[see also Fig. 7(a)] are subjected to random irradiance.
SThis introduces a random (noise) component in 8 and

21 ,L of Eq. (7) which can be viewed as a bipolar noisy
threshold. The noisy threshold produces in turn a

1 ( noisy component in the energy in accordance with Eq.
2- - (9)v1 , - - ,  (6). The magnitude of the noise components can be

controlled by varying the standard deviation of the
which is the required global energy. random light intensity array irradiating the PDS.

The learning procedure detailed in Sec. ITI requires The noisy threshold therefore produces random con-
fast random number generation for use in random trolled perturbation or shaking of the energy land-
drawing and switching of state of neurons from H scape of the net This helps shake the net loose when-
(during phase I of learning) and from H and V2 (during ever it gets trapped in a local energy minimum. The
phase II of learning). Another random number is also procedure can be viewed as generating a controlled
needed to execute the stochastic state update rule deformation or tremor in the energy landscape of the
when AEk > 0. Although fast digital pseudorandom net to prevent entrapment in a local energy minimum
number generation of up to 109 s- 1 is feasible 9 and can and thereby ensure convergence to a state of global
be used to help speed up digital simulation of the energy minimum. Both the random drawing of neu-
learning algorithm, this by itself is not sufficient to rons (more than one at a time is now possible) and the
make a large impact especially when the total number stochastic state update of the net are now done in
of neurons in the net is large. Optoelectronic random parallel at the same time. This leads to significant
number generation is also possible although at a slower acceleration of the simulated annealing process. The
rate of 105 s. Despite the slower rate of generation, parallel optoelectronic scheme for computing the glob-
optoelectronic methods have advantages that will be al energy described earlier [see Fig. 7(b)] can be used to
elaborated on below. An optoelectronic method for modulate the standard deviation of the optical random
generating the Boltzmann probability factor p(AE) noise array used to produce a noisy threshold with a
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function of the instantaneous global energy E and/or tendable to multilayered nets of more than three layers
its time rate change dEldt. In this fashion an adaptive and to 2-D arrangement of synaptic inputs to neurons,
noisy threshold scheme can be realized to control the as opposed to the 1-D or lineal arrangement described
tremors in the energy landscape if necessary. The here. Other learning algorithms calling for a multilay-
above discussion gives an appreciation of the advan- ered architecture such as the error backprojection al-
tages and flexibility of using optical random array gorithm3O and its coherent optics implementation45

generators in making the net rapidly find states of can also now be envisioned optoelectronically employ-
global energy minimum. No attempt is made here to ing the partitioning scheme described here.
estimate in detail the speed enhancement over digital Learning algorithms in layered nets lead to analog or
execution of the simulated annealing process as this multivalued Tii. Therefore high-speed computer-
will be dependent on the characteristics of the light controlled SLMs with graded pixel response are called
emitting array, the photodetector array, the spatial for. Methods of reducing the needed dynamic range
light modulator, and the speed of the computer-con- of Tj or for allowing the use of ternary T, are however
troller interface used. Nevertheless, the enhancement under study to enable the use of commercially avail-
over digital serial computation can be significant, ap- able fast nonvolatile binary SLM devices such as the
proaching 5-6 orders of magnitude especially for rela- Litton/Semetex magnetooptic SLM (MOSLM).16 A
tively large multilayer nets consisting of from a few frame switching time better than 1/1000 s has been
tens to a few hundred neurons. A recent study of demonstrated recently in our work on a 48 X 48 pixel
learning in neuromorphic VLSI systems in the context device by employing an external magnetic field bias.
of a modified Boltzmann machine gives speedup esti- It is worth noting that the role of optics in the architec-
mates of 106 over serial digital simulations.4 ture described not only facilitates partitioning the net

into groups or layers but also provides the massive
V. Opt ofliC NAI Chip interconnectivity mentioned earlier. For example, for

The discussion in the preceding sections shows that a neural net with a total of N - 512 neurons, the optics
optical techniques can simplify and speedup stochas- enable making 2N2 - 2.62 x 106 programmable weight-
tic learning in artificial neural nets and make them ed interconnections among the neurons in addition to
more practical. The attractiveness and practicality of the 4N - 2048 interconnections that would be needed
optoelectronic analogs of self-programming and learn- in Fig. 6(b) to compute the energy E.
ing neural nets are enhanced further by the concept of Assuming that material and device requirements of
optoelectronic neural chips presented in Fig. 8. The the architectures described can be met and partitioned
embodiments shown rely heavily on the use of comput- self-organizing neural net modules will be routinely
er or microprocessor interfaced spatial light modula- constructed, the addition of such a module to a com-
tors and photodetector arrays. The figure shows how puter controller through a high speed interface can be
the free-space anamorphic lens system in the top left viewed as providing the computer controller with arti-
embodiment can be replaced by a single photodetector ficial intelligence capabilities by imparting to it neural
array with horizontal strip elements that spatially in- net attributes. These capabilities include sef-organi-
tegrate the light emerging from rows of MOSLM 2 zation, self-programmability and learning, and asso-
(lower right embodiment). MOSLM 2 represents the ciative memory capability for conducting nearest-
T,j mask of Fig. 6. Each column MOSLM 1 is uniform- neighbor searches. Such attributes would enable a
ly activated by the computer controller. This replaces small computer to perform powerful computational
the function of the anamorphic lens system that was tasks of the kind needed in pattern recognition, and in
needed in Fig. 6 to smear the light from the LED array the solution of combinatorial optimization problems
vertically onto the elements of the T, mask. The and ill-posed problems encountered, for example, in
optoelectronic neural chip represents a neural module inverse scattering and vision, which are confined at
operating in an ambient light environment as com- present to the domain of supercomputers.
pared with a biological neural module operating in a A central issue in serial digital computation of com-
chemical environment. The chip thus derives some of plex problems is computational complexity.47  Pro-
its operating energy from the ambient light environ- gramming a serial computer to perform a complex
ment. computational task is relatively easy. The computa-

tion time however for certain problems, especiallyV. ODs uion those dealing with combinatorial searches and combi-
The architecture described here for partitioning a natorial optimization, can be extensive. In neural nets

neural net can be used in hardware implementation the opposite is true. They take time to program [for
and study of self-programming and learning algo- example, computation of the interconnectivity matrix
rithms such as, for example, the simulated annealing of synaptic weights by outer product or correlation
algorithm outlined here. The parallelism and massive (Hebbian rule) and setting the weights accordingly].
interconnectivity provided through the use of optics Once programmed, however, they perform the compu-
should markedly speed up learning even for the simu- tations required almost instantaneously. This fact is
lated annealing algorithm, which is known to be quite one of the first attributes noted when working with
time-consuming when carried out on a sequential ma- neural nets and has recently been elaborated on.
chine. The partitioning concept described is also ex- Self-organization and learning entails the net deter-
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ferent steering angles, but an optimal weight distribution can be [81 H. Barrettetal.. Optical Boltzmann mat , n-t- n -dtadint
computed for each steering angle. From the simulation result, it paper OSA Topical Meeting on Optli.al ('onpuLnr,. 1n .. ne
is seen that the optimum far-field pattern has similar features to , ,ilage. 'V 1985.
the pattern given by the Doiph-Chebvshev distribution runction.
In the Dolph-Chebvshev pattern, all the sidelobes have the same
level for a specified beamwidth. A numerical example in [1) shows
an 8-element array ielement separation d = 0.5X) with 25.8(dB)
sidelobe level and 40.81 beamwidth. The optimum pattern given
by our simulation shows nearly equal level sidelobes which are
minimized for the given beamwidth.

V. DiscussioN

Simulated annealing is a modification of the iterative improve-
ment algorithm (4]. It is physically more meaningful and can be
computed more systematically than the iterative improvement (4].
Physically, the simulated annealing process is analogous to the
cooling of melt in crystal growth: careful annealing produces a
defect-free crystal, rapid annealing produces a defective crystal or
glass [3]. The probabilistic treatment with the probability function
PIE) = exp (-.IEIKT) provides a way to accept the unfavorable
changes and is easy to compute. From our simulation, it has been
found that the simulated annealing algorithm seems always to give
better performance than the iterative improvement algorithm.

Since simulated annealing is a modified iterative improvement
process, it takes a relatively long time to do an optimization prob-
lem just as iterative improvement does in a computer calculation.
The phased-array synthesis in our simulation runs for I h or so for
an array of 41 elements on a MICRO PDP-11 computer Finding an
efficient scheme to reduce the excessive amounts of computer time
for most optimization problems has always been of concern 15)-
[7]. Otherwise, it enough computation power is available, iterative
improvement can be run from random starts tor many times to
approach the optimum state. Fast optodigital computing schemes
similar to those described in [8] may also be considered for phased-
array synthesis by simulated annealing. It is understood that the
far field is the Fourier transform ot the array distribution function
An optical lens can be used for computing the Fourier transform
as the distribution function is inputted to the front tocal plane ot
the lens via, for example, an appropriate computer-driven spatial
lighi moduiator (SLM). The Fourier transform in the back focal plane
can oe recorded and fed to the computercontroller to make the
simulated a-inealing decision. The outcome is tedback to the SL M
to change the distribution function in the front tocal plane. The
hybrid optodigital scheme will do the Fourier transform instanl'v.
In this fasnion. the computation associated with the Fourier trans-
form can be virtually eliminated assuming a high-speed SLM and
computer interface are utilized. An optoelectronic Boltzmann
machine for accelerating the selection rule has also been proposed
earlier in [8]. This process can be repeated for each step in sim-
ulated annealing. Also, aCauchv probabilitv selection rule instead
ot the Boltzmann selection rule, can be used to speed up the whole
annealing process further (71.
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ARCHITECTURES AND METHODOLOGIES FOR SELF-ORGANIZATION AND STOCHASTIC
LEARNING IN OPTO-ELECTRONIC ANALOGS OF NEURAL NETS

N.H. Farhat, and Z.Y. Shae
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Abstract

Self-organization and learning is a distinctive feature of neural nets
and processors that sets them apart from conventional approaches to signal
processing. It leads to self-programmability which alleviates the problem
of programming complexity in artificial neural nets. We have devised
architectures for partitioning an opto-electronic analog of a neural net
into distinct layers with prescribed inter-connectivity pattern to enable
stochastic learning by simulated annealing in the context of a Boltzmann
machine. Stochastic learning is of interest because of its relevance to
the role of noise in biological neural nets. It can shed light on the way
nature has turned noise present in biological nets to work to its advantage.
Practical considerations and methodologies for appreciably accelerating
stochastic learning in such a multi-layered net are also described. These
include the use of parallel optical computation of the energy of the net,
the use of fast nonvolatile programmable spatial light modulators to realize
fast "plasticity", optical generation of random number arrays, and a noisy
thresholding scheme that makes stochastic learning more biologically plaus-
ible and does not require determining the energy of the net for the
annealing schedule.

1. INTRODUCTION

Interest in neural network models (see for example, [I]-[9]) and their
optical analogs (see for example [10]-[21]) stems from well recognized
information processing capabilities of the brain and the fit between what
optics can do and what even simplified models of neural nets can offer
toward the development of new approaches to collective signal processing
that are robust, fault tolerant and can be extremely fast.

As a result opto-electronic analogs and implementations of neural nets
are attracting today considerable attention. The optics in these imple-
mentations provide the needed parallelism and massive interconnectivity and
therefore a potential for realizing relatively large neural nets while the
decision making elements are realized electronically heralding a possible
ultimate marriage of VLSI and optics.

Architectures suitable for use in the implementation of opto-electronic
neural nets of one-dimensional and two-dimensional arrangements of neural
nets have been studied and described recently [11]-[14]. Two-dimensional
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architectures for opto-electronic analogs of neural nets have been success-
fully used in the recognition of objects from partial information by either
complementing the missing information or by automatically generating correct
labels of the data (object feature spaces) the memory is presented with [22].

In associative memory applications, the strength of interconnection
between the "neurons" of the net is determined by the entities one wishes
to store in the net. Specific storage "recipes" based on a Hebbian model
of learning (outer-product storage algorithm) or variations thereof are
usually employed. In that sense the memory is taught what is should know
and be cognizant of. What can be of great utility however, is that neural
nets can also be made to be self-organizing and learning i.e., to become
self-programming. The combination of neural nets, Boltzmann machines, and
simulated annealing concepts with high speed opto-electronic implementations
promise to produce high-speed artificial neural net processors with stochas-
tic rather than deterministic rules for decision making and state update
that can form their own internal representations (connectivity weights) of
their environment, the outside world data they are presented with, in a
manner very analogous to the way the brain forms its own symbolic repre-
sentations of reality. This is quite intriguing and has far reaching
implications for smart sensing and recognition, thinking machines, and
artificial intelligence as a whole. Our exploratory work is showing that
optics can also play a role in the implementation and speeding up of
learning algorithm (such as simulated annealing in the context of a
Boltzmann machine formalism [23]-[26] and error back propagation [27]) in
such self-teaching nets and for their subsequent use in automated robust
recognition of entities the nets have had a chance to learn earlier by
repeated exposure to them when in a learning mode. Self-organization and
learning seems to be what sets apart optical and opto-electronic
architectures and processing based on models of neural nets from other
conventional approaches to optical processing.

In this paper we are therefore first concerned with architectures for
opto-electronic implementation of neural nets that are able to program or
organize themselves under supervised conditions, i.e., of nets that are
capable of (a) computing the interconnectivity matrix for the associations
they are to learn, and (b) of changing the weights of the links between
their neurons accordingly. Such self-organizing networks have therefore
the ability to form and store their own internal representations of the
entities
or associations they are presented with. We are also concerned with
stochastic learning in such nets and with methodologies for accelerating
the learning process. These include a novel noisy threshold scheme that
can speed up the simulated annealing process in opto-electronic analogs of
neural nets. Results of computer simulations demonstrating capabilities of
annealing with the noisy thresholding are presented.

2. PARTITIONING ARCHITECTURES AND STOCHASTIC LEARNING

Multi-layered self-programming nets have been described recently, [251,
[261, where the net is partitioned into three groups. Two are groups of
visible or external input/output units or neurons that interface with the
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net environment or surroundings. The third is a group of hidden or internal
units that separates the input and output units and participates in the
process of forming internal representations of the associations the net is
presented with, as for example by "clamping" or fixing the states of the
input and output neurons to the desired associations and letting the net
run through its learning algorithm to arrive ultimately at a specific set
of synaptic weights or links between the neurons that capture, after many
iterations of the process, the underlying structure of all thn associations
presented to the net. The hidden units or neurons prevent the input and
output units from communicating with each other directly. In other words
no neuron or unit in the input group is linked directly to a neuron in the
output group and vice-versa. Any such communication must be carried out
via the hidden units. Neurons within the input group do not communicate
with each other. They can only communicate with neurons in the input and
output groups as stated earlier.

As an example of the continuing role for optics, we describe next a
concept for partitioning an opto-electronic analog of a neural net into
input, output, and internal units with the selective communication pattern
described above in order to realize a multi-layered net analog capable of
stochastic learning, by means of a simulated annealing learning algorithm
in the context of a Boltzmann machine formalism (see Fig. l(a)). The
arrangement shown derives from the neural network analogs we described
earlier [11]. The network, consisting of say N neurons, is partitioned
into three groups. Two groups, V1 and V2 , represent visible or exterior
units that can be used as input and output units respectively. The third
group H are hidden or internal units. The partition is such that NI+N 2+N3=N
where subscripts 1, 2, 3 on N refer to the number of neurons in the Vl, V2
and H groups respectively. The interconnectivity matrix, designated here as
Wij, is partitioned into nine submatrices, A, B, C, D, E, and F plus three
zero submatrice shown as blackened or opaque regions of the Wij mask. The
LED array represents the state of the neurons, assumed to be unipolar binary
(LED on = neurons firing, LED off = neuron not-firing). The Wij mask repre-
sents the strengths of interconnection between neurons in a manner similar
to earlier arrangements [111. Light from the LEDs is smeared vertically
over the Wij mask with the aid of an anamorphic lens system (not shown in
Fig. l(a)) and light emerging from rows of the mask is focused with the aid
of another anamorphic lens system (also not shown) onto elements of the
photodetector (PD) array. Also we assume the same scheme utilized in [il]
for realizing bipolar values of Wij in incoherent light is adopted here,
namely by separating each row of the Wij mask into two subrows and assigning
positive values of Wtj to one subrow and negative values Wjj to the other,
then focusing light emerging from the two subrows separately onto pairs of
adjacent photosites connected in opposition in each of the Vl, V2 and H
segments of the photodetector array. Submatrix A with NIxN1 elements, pro-
vides the interconnection weights of units or neurons within group VI .

Submatrix B,with N2xN2 elements, provides the interconnection weights of
units within V2 . Submatrices C (of NIxN 3 elements) and D (of N3xN1 ele-
ments) provide the interconnection weights between units of V1 and H and
similarly submatrices E (of N2xN3 elements) and F (of N3xn2 ) provide the
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interconnection weights of units V2 and H. Units in V1 and V2 can not
communicate with each other directly because locations of their interconnec-
tivity weights in the Wij matrix or mask are blocked out (blackened lower
left and top right portion of Wij). Similarly units within H do not commu-
nicate with each other because locations of their interconnectivity weights
in the Wij mask are also blocked out (center blackened square of Wij). The
LED element e can be of graded response. It can be viewed as representing
the state of an auxiliary neuron in the net that is always on to provide a
threshold level to all units by contributing to the light focused onto only
negative photosites of the PD arrays by suitable modulation of pixels in
the G column of the interconnectivity mask. This method for introducing
the threshold level is attractive as it allows for introducing a fixed
threshold (fixed G-LED output) to all neurons or an adaptive threshold if
desired. The threshold is global when the transmittances of pixels in G are
fixed and the e LED level in controlled. The threshold is local if the
e LED output is fixed and the pixel transmittances are allowed to vary.

wI E.-,

F" V OSLM

'HOM-O I C INTERCONNEC-
LEDTIVITY MSK

Fig 1. Architecture for opto-electronic analog of layered self-programming
net. (a) partitioning concept and, (b) arrangement for rapid
determination of the net's global energy E for use in learning
by simulated annealing.

We have described elsewhere in some detail [28], how by using a computer
controlled nonvolatile spatial light modulator to implement the Wij mask
in Fig. l(a) and including a computer/controller as shown and by repeated
application of the simulated annealing procedure with Boltzmann or other
stochastic state update rule and collection of co-occurance statistics on
the states of the neurons at the end of each run when the net reached
thermodynamic equilibrium, the scheme can be made self-programming with
ability to modify the weights of synaptic links between its neurons to form
internal representations of the input/output associations or patterns
presented to it.
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3. ACCELERATED LEARNING

The stochastic learning by simulated annealing procedure was originally
conceived for serial computation. When dealing with parallel optical
computing systems of the kind we described, it does not make sense to
strictly adhere to a serial algorithm. Modifications that can take
advantage of the available parallelism of optics to speed up stochastic
learning should be considered. In this section we offer several such
modifications that can markedly speed-up stochastic learning in
opto-electronic implementations as compared to serial digital
implementation.

Learning by simulated annealing requires calculating the energy E, of
the net (71,(291,

E uisi (1)

where •i is the state of the i-th neuron and

ui = I Wi v. E i + I (2)

j ~i

is the activation potential of the i-th neuron, with ei iand Ii being
respectively the threshold level and external input of the i-th neuron.
Equation (2) can be written in the form,

ui = X W jsj  (3)

by absorbing ei and Ii in the weight matrix Wij. This can be done by adding
a G column to the W11 matrix to furnish ei as described earlier. A similar
procedure can be useda to furnish Ii by adding another column with transmit-
tances proportional to Ii whose light transmittance is focused onto the
positive photosites of the photodetector array in Fig. l(a). The above
method of introducing ei and Ii suggests also that random (noise) components
of both ei and Ii can be introduced by focusing a random array of light
spots, whose intensities are allowed to vary randomly and independently
with time, directly onto the positive and negative photosites of the PD

array of Fig. 1(a). In this fashion deterministic and random composition
of ei and Ii can be realized. Taken together, the random components
of ei and Ii can be viewed as random bipolar noisy threshold. We
will return to this point later in our discussion of annealing with noisy
threshold.

A simplified version of a rapid scheme for obtaining E opto-elec-
tronically is shown in Fig. l(b). The scheme requires the use of an
electronically addressed nonvolatile binary (on-off) spatial light modu-
lator consisting of a single column of N pixels. A suitable candidate is a
parallel addressed magneto-optic spatial light modulator (MOSLM) [30], in
particular one consisting of a single column of N pixels that are driven
electronically by the same signal driving the LED array in order to
represent the state vector s of the net. A fraction of the focused light
emerging from each row of the Wij mask is deflected by the beam splitter BS
onto the individual pixels of the column MOSLM such that light from adjacent
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pairs of subrows of Wij fall on one pixel of the MOSLM. The MOSLM pixels
are overlayed by a checkered binary mask as shown. The opaque and trans-
parent pixels in the checkered mask are staggered in such a fashion that
light emerging from the left subcolumn will originate from the positive
subrows Wt1j of Wij only and light emerging from the right subcolumn will
originate from the negative subrows Wjij of Wij. By separately focusing the
light from the left land right subcolumns as shown onto two photodetectors
and subtracting and halving their outputs one obtains,

E W+ - W- )s I W. .s)s. (4)
2 ij )5 5 J 13 2 1i = - uis.

which is the required global energy.
Stochastic learning by simulated annealing in the opto-electronic neural

net analogs of Fig. 1 requires, as detailed elsewhere [28], fast random
number generation for use in random drawing and switching of state of
neurons from H and from H and V2 . Another random number is also needed
to execute the stochastic state update rule. Although fast digital
pseudo-random number generation of up to 109 (sec-1 ] is feasible [31]
and can be used to help speed up digital simulation of the learning
algorithm, this by itself is not sufficient to make a large impact
specially when the total number of neurons in the net is large.
Opto-electronic random number generation is also possible although at a
slower rate of about 105 [sec]. Despite the slower rate of generation,
opto-electronic methods have advantages that will be elaborated upon
below. An opto-electronic method for generating the Boltzmann probability
factor needed in the simulated annealing algorithm [281 employing speckle
statistics is described in [321 and optical generation of random number
arrays by photon counting image acquisition systems or clipped laser
speckle have also been recently described [33]-[36]. These photon counting
image acquisition systems have the advantage of being able to generate
normalized random numbers with any probability density function. A more
important advantage of optical generation of random number arrays however
is the ability to exploit the parallelism of optics to modify the simulated
annealing and the Boltzmann wachine iormalism detailed above in order to
achieve significant improvement in speed. As stated earlier, with parallel
optical random number generation, a spatially and temporally uncorrelated
linear array of perculating light spots of suitable size can be generated
and imaged onto the photodetector array (PDA) of Fig. 1 directly such that
both the positive and negative photosites of the PDA are subjected
to random irradiance. This introduces a random (noise) component in ei and
Ii of eq. (2) which can be viewed as stated earlier as bipolar noisy
threshold. The noisy threshold produces in turn a noisy component in the
energy in accordance to eq. (2). The magnitude of the noise components can
be controlled by varying the standard deviation of the random light
intensity array irradiating the PDA. The noisy threshold produces
therefore random controlled perturbation or "shaking" of the energy
landscape of the net. This helps shake the net loose whenever it gets
trapped in a local energy minimum. The procedure can be viewed as
generating a controlled deformations or tremor in the energy landscape of
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the net to prevent entrapment in a local energy minimum and ensure thereby
convergence to a state of global energy minimum. Both the random drawing
of neurons (more than one at a time is now possible) and the stochastic
state update of the net are now done in parallel at the same time. This
leads to significant acceleration of the simulated annealing process. In
the following, results of numerical simulations aimed at gaining insight in
the performance of the noisy threshold scheme are presented.

4. SIMULATION RESULTS

For the purposes of this simulation we form a fully interconnected
(single layer) neural net with random bipolar binary weights matrix with
diagonal elemenits set to zero. The number of neurons N is 16. The weights
are symmetrical. Figure 2 shows the density of states (energy histogram)
of the net, where we calculate the energies of all the possible
(216) configurations of the net. The Y (vertical) axis shows the number
of configurations (out of 216) with the same energy and their
corresponding energy energy represented by the X (horizontal) axis. The
low energy configurations correspond to states near the very left of the
curve, of which a good annealing scheme should find one. To avoid lengthy
simulation time, we do not in the following exhaust the simulation for all
possible configurations (216). Instead, we randomly select 50
configurations as the test sample space. The energy histogram of these 50
configurations is shown in Fig. 3. In Fig. 4 is shown the energy histogram
of the states to which the net converges when initiated with the 50
configurations of the test space. The histogram was obtained by initiating
the net with any one of the 50 states and followed by finding the final
state to which net net converges by iteratively applying the customary
neural net state update rule [7] namely,

1 if u 0 4)

( 0 if ui S 0

which amounts to performing a steepest gradient descent search into local
minima of the net, then calculating the energy of the final state. The
plot means that there are Y number of initial states (out of the 50 config-
urations of the sample space) which converge (in the sense of the above
conventional steepest descent) to local minima with same energy X. We see
that a fair number of initial states end up trapped in local energy minima
at high energy state because the steepest gradient descent search method
involved is deterministic and does not have provisions for escaping from a
local minimum. This curve can serve as a reference to test the performance
of an annealing scheme's ability to escape from a local minimum and find
the global minimum. In Figs 5 and 6, we display the energy histograms of
the convergent states when different annealing schemes were used. In these
figures, each of the 50 configurations of test space ir used as input
vector for 100 times, and the statistics of the convergent states are
collected. The results employing the simulated annealing algorithm
[23],[24] with random drawing of neurons one neuron at a time, and
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stochastic update employing noise uniformly distributed in the range (-T,T)
are shown in Fig. 5. The annealing or cooling schedule used was: 96 @ 10,
160 @ 5, 96 @ 3, 96 @ 1, 96 @ .5, and 96 @ 0.01 where I @ T specifies the
number of iterations I at temperature T. Figure 6 shows the results
obtained with the noisy threshold scheme where the deterministic component
of the threshold is taken to be zero and independent bipolar noise
components uniformly distributed in the (-T,T) range are added to the
thresholds every iteration. The probability of the i-th neuron switching
its state was taken to be inversely proportional to its activation
potential ui. The noise amplitude T was reduced gradually every
specified number of iterations to allow the net to find the states of
global energy minimum or one close to it. The following annealing schedule
was utilized: 10 @ 2.5, 10 @ 1.5, 10 @ .5, and 10 @ .1. It is seen that
annealing with noisy threshold finds states of global energy minima equally
well as the conventional simulated annealing scheme. The number of
iterations involved is however considerably less: 40 as compared to 540 in
the conventional simulated annealing scheme. It is worth noting also that
the noisy threshold scheme does not require knowing the energy of the net
to apply the rule described in the preceeding section. This further
accelerates the search for the global minimum and can markedly shorten
learning time [28].
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5. DISCUSSION

We have described an architecture for partitioning an opto-electronic
analog of a neural net to form a multilayered net that permits
self-organization and learning when computer controlled nonvolatile spatial

light modulators are utilized to realize the required plasticity. The
focus here is on stochastic learning as opposed to deterministic learning
because it can account for the role of noise in biological neural nets. We
also described opto-electronic architectures that can be used for fast
determination of the energy of the net and therefore can accelerate the
simulated annealing process involved in stochastic learning where "optical
random arrays" can also be used to accellerate the process further.
However, when parallel optical computing is employed, it is not necessary
to adhere to a serial simulated annealing algorithm. We have shown that
departure from the conventional simulated annealing algorithm through the
use of a noisy thresholding scheme promises to markedly accelerate

stochastic learning in opto-electronic implementation of multilayered
neural nets, make the procedure more biologically plausible, and make

stochastic learning practical.
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Bimodal Stochastic Optical Learning Machine

N. H. Farhat Z. Y. Shae
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Electrical Engineering Department

Phila. PA 19104

Abstract

Self-organization and learning is an important attribute of neural nets that sets them
apart from other approaches to signal processing. The study of stochastic learning by
simulated annealing in the context of a Boltzmann machine is attractive because it
could shed light on the role of noise in biological neural nets and because it can lead
to artificial neural nets that can be switched between two d;stinct operating modes
depending on noise level in the network. At finite noise level (or temperature) the net
can be operated in a "soft" mode where learning can take place by automated synaptic
modifications. Once learning is completed the net is "hardened" (or frozen) and acts
as associative memory by reducing the noise level or temperature to zero. We prese nt
the results of numerical and experimental study aimed at opto-electronic realization
of such networks. The results include: (a) fast annealing by noisy thresholding which
demonstrates that the global energy minimum of a small analog test network can be
reached in a matter of a few tens of neuron time constants, (b) stochastic learning with
binary weights which paves the way for the use of fast binary and nonvolatile spatial
light modulators to realize synaptic modifications.

1 System Architecture

Optics and opto-electronic architectures and techniques can play an important role in
the study and implementation ot self-programming networks and in speeding-up the
execution of learning algorithms. Learning requires partitioning a net into layers with
a prescribed communication pattern among them. A method for partitioning an opto-
electronic analog of a neural net into input, output, and internal groups (layers) of
neurons with seiective communication pattern among neurons within each layer and
between layers that is capable of stochastic learning, by means of a simulated annealing
algorithm in the context of a Boltzmann machine formalism is described in Fig. 1(a)
The network, consisting of N neurons, is partitioned into three groups. Two groups, lVI
and V2 , represent visible or environmental units that can be used as input and output
units respectively. The third group H are hidden units. The partition is such that
N, + N2 -r N3 = N where subscripts 1.2, and 3 on .V refer to the number of neurons
in the V1 , V2 and H groups respectively. The interconnectivity matrix, designated
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here as wiJ, is partitioned into nine submatrices, A, B. C, D. E. and F plus three
zero submatrices shown as blackened or opaque regions of the wij mask. The LED
array represents the state of the neurons, assumed to be unipolar binary (LED on -

neurons firing, LED off = neurons not-firing). The wil mask represents the strengths
of the interconnection between neurons. Light from the LEDs is smeared vertically
over the wij mask with the aid of an anamorphic lens system (not shown in Fig.
1(a)) and light emerging from rows of the mask is focused with the aid of another
anamorphic lens system (also not shown) onto elements of the photodetector (PD)
array. Bipolar values of w~i can be realized in incoherent light by separating each row
of the wi] mask into two subrows and assigning positive values of wt to one subrow and
negative values w- to the other, then focusing light emerging from the two subrows
separately onto pairs of adjacent photosites connected in opposition in each of the V1.
V2 and H segments of the PD array as described elsewhere [2]. Submatrix A. with
NV~xN 1 elements, provides the interconnection weights of units or neurons within group
V1. Submatrix B, with N2xN2 elements, provides the interconnection weights of units
within V2 . Submatrices C (of .V1xV 3 elements) and D (of .V3x.V1 elements) provide
the interconnection weights between units of V and H and similarly submatrices E
(of ,V2 x 3 elements) and F (of NV3x-N2 elements) provide the interconnection weights
of units V2 and H. Units in V and V2 can not communicate with each other directly
because locations of their interconnectivity weights in the u;j matrix or mask are
blocked out (blackened lower left and top right portion of wzi). Similarly units within
H do not communicate with each other because locations of their interconnectivitv
weights in the wij mask are also blocked out (center blackened square of w, ). The
LED element 0 is of graded response. It can be viewed as representing the state of an
auxiliary neuron in the net that is always on to provide a threshold level to ail units
by contributing to the light focused onto only negative photosites of the PD array by
suitable modulation of pixels in the G column of the interconnectivity mask. This
method for introducing the threshold level is attractive as it allows for introducing
a fixed threshold to all neurons or an adaptive threshold if desired. It can also be
employed to alter the energy landscape of the net adaptively in accordance to the
behavior of other parameters of the net. Figure l(b) shows the arrangement for rapid
determination of the net's energy E for use in learning by simulated annealing. A
computer works as the system controller to calculates P,, and P,, and also to control the
MOSLM which implements the interconnectivity matrx W. This architecture allows
stochastic learning by simulated annealing in the context of a Boltzmann machine. The
learning algorithm for Boltzmann machine can be summarized as follows:

1. Choose one mapping or associated pair that the net is required to learn, and
present it to the net. The associated pair consists of two unipolar binary vectors
one an input vector and the other an output vector.

2. Clamp the input vector to the V, neurons. and the corresponding output vector
to the V2 neurons.

3. Employ simulated annealing method in energy space to find low energy configu-
rations at the given V, and V2. The final temperature in the cooling schedule is
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called To and will be used later as an annealing parameter in Cross-Entropy or
G-space. During this step, random drawing and change of only the states of the
hidden neurons (H) takes place.

4. Repeat steps 2-3 V1 times for all associations the net is required to learn, and
collect co-occurrence statistics i.e. determine the probabilities Pij of the ith and
jth being in the same state i.e. both being on or off.

5. Unclamp the V2 neurons and repeat steps 3-4 for all input vectors, and collect co-
occurrence statistics again i.e. determine the probabilities Pj of the ith and jth
neurons being in the same state. During this step. random drawing and change
of both the states of the H and the V2 neurons takes place.

6. All weights in the net are modified by increasing the synaptic weight (W,,) be-
tween the ith and jth neurons by a small amount b if Pii - Pt' > 0. otherwise.

decreasing the weight by the same amount. Note this requires multivalued Wu,
or incremental variation of W 2 that requires the use of graded response spatial
light modulators for realizing synaptic modifications in opto-electronic implemen-
tations.

7. We call steps 1-6 a learning cycle. The learning cycle consists of two phases.
Phase one involves clamping the input and output units to the associated pairs.
Phase two involves clamping the input units to the input vector alone and letting
the output units free run with the hidden units. The learning cycle is repeated

( again and again and is halted after P~j - P', is close to zero for every i and j.

The learning procedure described above can be supported in the opto-electronc

hardware environment described previously.

2 Fast Annealing With Noisy Threshold

With the aid of an optical random number generation. a spatially and temporally
uncorrelated linear array of perculating light spots of suitable size and intensity range
can be generated and imaged onto the PD array of Fig. 1 directly such that both the
positive and negative photosites of the PD array are subjected to random irradiance.
This introduces a random (noise) component in the threshold. The noisy threshold
produces in turn a noisy component in the energy function of the net. The magnitude
of the noise components can be controlled by varying the light intensity array irradiating
the PD array. The noisy threshold produces therefore random controlled perturbation
or "shaking" of the energy landscape of the net. This helps shake the net loose whenever
it gets trapped in a local energy minimum. The procedure can be viewed as generating
a controlled gradually decreasing deformations or tremors in the energy landscape of
the net that prevents entrapment in a local energy minimum and helps the net settle
into the global minimum energy date or one close to it. Both the random drawing of
neurons (more than one at a time is now possible) and the stochastic state update of
the net are now done in parallel at t'o same time. This leads to significant acceleration
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of the simulated annealing process. Electronic control of the random light intensity
enables realizing any annealing profile. We had presented the results of numerical
study elsewhere [1]. In the following, results of an experimental study aimed at gaining
insight in the performance of the noisy threshold scheme are presented.

3 Experimental Results

An annealing experiment based on the noisy threshold. algorithm in an opto-electronic
neural net is reported. A television screen tuned to an empty channel where no TV
station operates is used as the spatio-temporal optical noise source. We use a lens
to project the optical noise pattern (snow pattern) onto the photodetector array of an
opto-electronic neural net consisting of 16 unipolar binary neurons of the type described
elsewhere [2]. The connectivity matrix of the network was the same random ternary
matrix utilized in earlier work [1]. The brightness of the TV screen is controlled by
the D/A output of a MASSCONIP computer, and the convergent state is monitored by
the A/D input of the same computer. A photograph of the experimental arrangement
is shown in Figure 2. We investigated four types of cooling profiles: linear, concave,
convex, and stair-case illustrated in Figure 3. For each cooling profile, we investigate 5
annealing time intervals: 100. 200, .500, 1000, and 2000 ms. For each cooling profile and
annealing time interval, we do the annealing 100 times to collect sufficient statistics,
and find the probability that the system converges to its global minimal energy state.
The experimental results obtained show that the setup can find the global energy
minimum of an artificial neural net of 16 neurons in 2000 ms which corresponds to
32 time constants of the neurons in the test network. A net of neurons with response
time of 1 g sec would anneal therefore in few tens of microseconds and this is expected
to be independent of the number of neurons in the net as long as parallel injection of
noise in the network is implemented. The cooling profile had no observable effect on
this result. The probabilities of convergence to a global rminimum as function of the
annealing duration for different annealing profiles are shown in the table 1.

4 Stochastic Learning With Binary Weights

The Boltzmann machine learning algorithm described earlier employs graded weights.
However, from practical viewpoint, learning in artificial neural nets can be simplified
considerably if binary weights can be used. This would pave the way to using fast
nonvolatile binary spatial light modulators (SLMs) such as Magneto-Optic SLM and
Ferroelectric liquid crystal SLM. However, a Boltzman. machine basically is an adap-
tive system. If the step size of adaptive changes is too large and the sensitivity of
system response to the error signal is high, the machine will generally become unsta-
ble. Since a traditional Boltzmann machine has a high sensitivity in response to error
signal, i.e., it responds to the error signal (Pol - P') to modify synaptic weights even
when the error signal is very small, small weight variations are required to prevent
the systr'm from becoming unstable. However, in a binary weight net (Wi, = I. -1
the step size of adaptive change is large and fixed (-2 or 2). In order to prevent the
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system from becoming unstable, we increase the inertia of weights i.e. weights do not
change when small value of Pi, - Ptj occurs. As a result, the learning procedure of the
Boltzmann machine in a binary weight net would be identical to the procedure of the
graded weights net stated in the system architecture section, except step 6 which is
modified as follows: If Pij - P' ) > M, set Wi 3 = 1; if Pij - P'j < -M, set Wj=
otherwise, no change, where M E [0, 1] is a fixed constant.

The goal of the Boltzmann machine is to minimize the Cross-Entropy G by means
of modifying the weights of the net in a certain order. The G space is an information
theoretic measure of the distance between the probability distributions when an envi-
ronmental input is present in the net and when it is free running with no environmental
input applied, and is given by

G = P+ (V,,) L P -+ on

where P+(V,) is the probability of the visible units being in the a state when the visible
units are subjected to the environmental input. Namely. P+(V,) represents the desired
or specified probability for the a state. P-(V,) is the corresponding probability when
the net is free-running. Namely, P-(Va) represents the actual probability generated
from the net for the a state. P-(V,) depends on the weights W,;, and so G can be
altered by changing Wj. Since, in general. there are local minima in G space, gradient
descent search will find a local minimum instead of the global minimum. In order to
reach the global minimum in G space, introduction of noise in G space is required.
However,-if the noise level is too large, the network can not generate the specified or
desired environmental distribution. A systematic way for adding noise in G space. i.e.
an annealing scheme in G space, has not yet been studied in detail. Here we propose
the use of the final temperature To of the simulated annealing schedule used in the
energy space E as the annealing parameter in G space, since P-(V) is function of To.
In the first few learning cycles, we use high values of To. This will provide high level
of noise in G space. The value of To is decreased gradually along with the number of
learning cycles. Accordingly, a simulated annealing process in G space is accomplished
by decreasing the final temperature To in a similar way to the simulated annealing
process in energy space which is accomplished by decreasing annealing temperature T.
Note that an annealing schedule with high value of To is equivalent to a short time
interval annealing schedule in E space. i.e., both cases can generate high level of noise
in G space, and vice versa. Accordingly, annealing time interval in E space can also be
used as an annealing parameter in G space. As a result. a simulated annealing process
in G space can also be accomplished by gradually increasing the annealing time interval
in E space along with the number of learning cycles. Results of computer simulations
of stochastic learning by simulated annealing in a Boltzmann machine employing both
graded and binary weights are presented in the next section.

5 Simulation Results

In these simulations we use noisy threshold (N-T) annealing scheme [1] and use the
annealing time interval in E space as an annealing parameter in G space. All the simu-



lations learn to solve a 4-2-4 encoder problem [3] in the context of Boltzmann machine
formalism i.e. this consists of having a three layered net, of the kind described in the
architecture section, learn to form its own internal representations of the associations
presented to it. For all simulations, the net reaches equilibrium 100 times (25 times for
each input vector) for collecting the statistics of P1j during the input and output clamp-
ing phase. The situation is the same for collecting the statistics of Pj. All annealing
schedules are stated in the corresponding Figures in the notation of I4T explained
earlier [1]. The noise we used is binary noise whose amplitude is either T or -T and
is decreased gradually in time and terminated at at To. Figure 4 shows the results
of the linear weight learning scheme, and Figures 5 shows the results of the binary
weight learning scheme. All Figures show the results for 12 runs. The parameter If
we used is 0.1. Only two annealing schedules in E space are used for the annealing
in G space. During the first half of the total number of learning cycles the short time
interval annealing schedule is employed, and during the later half of the learning cycles
the long time interval annealing schedule is employed. These results show the viability
of the annealing scheme in G space, and also show the viability of the binary weight

stochastic learning scheme.

6 Conclusions

We have described an architecture for partitioning an opto-electronic analog of a neural
net to form a multilayered net that permits self-organization and learning when com-
puter controlled nonvolatile spatial light modulators axe utilized to realize the required
plasticity. The focus here is on stochastic learning as opposed to deterministic learning
because it may provide insight in the role of noise in biological neural nets. We also
described opto-electronic architectures that can be used for fast determination of the
energy of the net if such information is needed and for adaptive deterministic deforma-

tion of the net's energy landscape to control its behavior. We show that departure from
the conventional simulated annealing algorithm through the use of noisy thresholding
in opto-electronic .- hemes promises to markedly accelerate the annealing process. and
make stochastic learning practical. Employing the noisy thresholding scheme a small
opto-electronic neural net (of 16 neurons) was found to reach a global energy minimum
or one close to it in about 32 neuron time constants. We also show that binary weight
learning algorithm can be used in the context of a modified Boltzmann machine. This
paves the way to the use of nonvolatile binary spatial light modulators to realize the
required plasticity in such stochastic learning nets. Such nets. having learned their
environmental inputs can be "frozen" for use as associative memories of the entities
learned by merely removing injected noise from the net. Noise injection for annealing
returns the nets to a "soft" mode for learning new environmental inputs.
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Fig. 2. Pictorial view of opto-electronic neural
net of 16 unipotar binary neurons with random
ternary weights used to verify fast annealing
by noisy threshoolding.
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